Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Malcolm J. Todd and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail:
w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in main residue
R factor $=0.029$
$w R$ factor $=0.059$
Data-to-parameter ratio $=17.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Propane-1,2-diaminium hydrogenarsenate

The title compound, $\left(\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{AsHO}_{4}\right]$, is a molecular salt containing a network of propane-1,2-diaminium cations and hydrogenarsenate anions [mean As-O 1.686 (2) Å]. The crystal packing involves cation-to-anion $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and anion-to-anion $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, the latter resulting in dimeric associations of two adjacent hydrogenarsenate anions.

Comment

The title compound, (I) (Fig. 1), was prepared as part of our ongoing structural studies of hydrogen-bonding interactions in protonated-amine (di)hydrogenarsenates (Todd \& Harrison, 2005).

(I)

The $\left[\mathrm{HAsO}_{4}\right]^{2-}$ hydrogenarsenate group in (I) shows its normal tetrahedral geometry [mean As-O 1.686 (2) Å], with the protonated As1-O4 vertex showing its usual lengthening relative to the unprotonated $\mathrm{As}-\mathrm{O}$ bonds (Table 1). The propane-1,2-diaminium cation is disordered over two overlapped positions (Fig. 1). This positional disorder manifests itself as a terminal methyl group (atoms C3 or C4) being attached to either C 1 or C 2 , with 50% occupancy in each case. The N atoms and atoms C 1 and C 2 of the two orientations of the cation are not resolved. Allowing for the disorder, this ion is chiral, but crystal symmetry generates a $50: 50 \mathrm{mix}$ of enantiomers, which is consistent with the racemic starting material. Atoms N1 and N2 are close to being trans with respect to the $\mathrm{C} 1-\mathrm{C} 2$ backbone of the molecule (Table 1).

Figure 1
A view of (I), showing 50% probability displacement ellipsoids, with H atoms drawn as spheres of arbitrary radius. C-bound H atoms have been omitted for clarity and the hydrogen bond is indicated by a dashed line. Bonds to the disordered atoms C3 and C4 (see text) are shown as open lines.

Received 7 September 2005 Accepted 12 September 2005 Online 17 September 2005
\qquad

Figure 2
The packing for (I), with all C-bound H atoms omitted for clarity. Hydrogen bonds are indicated by dashed lines.

As well as electrostatic attractions, the component species in (I) interact by means of a network of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2). The $\left(\mathrm{HAsO}_{4}\right)^{2-}$ units are linked into inversion-generated dimeric pairs by way of the $\mathrm{O} 4-\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}}$ bond (see Table 2 for symmetry code), with a resulting As $1 \cdots$ As 1^{i} separation of 4.3963 (4) \AA. This situation is distinct from that observed in related materials, where chains (Lee \& Harrison, 2003) and sheets (Wilkinson \& Harrison, 2005) of (di)hydrogenarsenate ions linked by $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ bonds are seen.

In (I), the organic species interacts with the hydrogenarsenate dimers by way of six $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds [mean $\mathrm{H} \cdots \mathrm{O} 1.85 \AA$, mean $\mathrm{N}-\mathrm{H} \cdots \mathrm{O} 170^{\circ}$ and mean $\mathrm{N} \cdots \mathrm{O}$ 2.744 (3) Å]. Atoms O1, O2 and O3 accept two $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bonds each. This hydrogen-bonding scheme results in a threedimensional network (Fig. 2).

Experimental

Aqueous propane-1,2-diamine solution ($0.5 \mathrm{M}, 10 \mathrm{ml}$) was added to aqueous $\mathrm{H}_{3} \mathrm{AsO}_{4}$ solution ($0.5 \mathrm{M}, 10 \mathrm{ml}$) to result in a clear mixture. Aqueous ammonia was added to this solution to raise the pH to about 12 , which is beyond the second end-point for $\mathrm{H}_{3} \mathrm{AsO}_{4}$ (i.e. the predominant solution species is $\mathrm{HAsO}_{4}{ }^{2-}$). Crystals of (I) grew as the water evaporated over the course of a few days.

Crystal data

$$
\begin{aligned}
& \left(\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{AsHO}_{4}\right] \\
& M_{r}=216.07 \\
& \text { Monoclinic, } P 2_{1} / n \\
& a=10.9568(4) \AA \\
& b=6.4297(3) \AA \\
& c=11.5999(5) \AA \\
& \beta=104.816(2)^{\circ} \\
& V=790.03(6) \AA^{3} \\
& Z=4 \\
& D_{x}=1.817 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Data collection

Nonius KappaCCD area-detector diffractometer
ω and φ scans
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\text {min }}=0.726, T_{\text {max }}=0.883$
10517 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.059$
$S=1.11$
1816 reflections
103 parameters
H -atom parameters constrained

1816 independent reflections
1533 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.051$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-14 \rightarrow 14$
$k=-8 \rightarrow 8$
$l=-15 \rightarrow 15$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0164 P)^{2}\right. \\
& +0.583 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \text { 。 } \\
& \Delta \rho_{\text {max }}=0.51 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\text {min }}=-0.41 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.0047 \text { (7) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

As1-O1	$1.6642(17)$	As1-O2	$1.6817(18)$
As1-O3	$1.6659(18)$	As1-O4	$1.7336(18)$

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 1 \cdots \mathrm{O}^{\text {i }}$	0.93	1.76	$2.679(2)$	170
$\mathrm{~N} 1-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{ii}}$	0.91	1.87	$2.765(3)$	168
$\mathrm{~N} 1-\mathrm{H} 3 \cdots \mathrm{O}^{1 i i}$	0.91	1.83	$2.738(3)$	175
$\mathrm{~N} 1-\mathrm{H} 4 \cdots \mathrm{O} 1$	0.91	1.81	$2.716(3)$	177
$\mathrm{~N} 2-\mathrm{H} 5 \cdots 3^{\text {iv }}$	0.91	1.82	$2.713(3)$	168
$\mathrm{~N} 2-\mathrm{H} 6 \cdots \mathrm{O}^{\mathrm{v}}$	0.91	1.95	$2.829(3)$	162
$\mathrm{~N} 2-\mathrm{H} 7 \cdots \mathrm{O}^{\text {vi }}$	0.91	1.80	$2.702(3)$	169

Symmetry codes: (i) $-x+1,-y,-z$; (ii) $x, y+1, z$; (iii) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$; (iv)
$-x+1,-y+1,-z ;$ (v) $x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2} ;$ (vi) $x+\frac{1}{2},-y+\frac{3}{2}, z+\frac{1}{2}$.
The organic cation is orientationally disordered, such that the two positions of atoms $\mathrm{N} 1, \mathrm{~N} 2, \mathrm{C} 1$, and C 2 overlap and cannot be resolved. The site-occupation factors of atoms C3 and C4 refined to 50% within experimental error and were both fixed at 0.50 for the final cycles of refinement. The O-bound H atom was found in a difference map and refined as riding in its as-found relative position. The H atoms bonded to C and N were located in idealized positions, with $\mathrm{N}-\mathrm{H}=0.91 \AA$ and $\mathrm{C}-\mathrm{H}=0.98-0.99 \AA$, and refined as riding, allowing for free rotation of the $-\mathrm{NH}_{3}$ groups. The constraint $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ carrier $)$ or $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}$ (methyl carrier) was applied.

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski \& Minor, 1997); data reduction: HKL DENZO (Otwinowski \& Minor 1997), SCALEPACK and SORTAV (Blessing 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

We thank the EPSRC National Crystallography Service (University of Southampton) for the data collection.

metal-organic papers

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38
Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Lee, C. \& Harrison, W. T. A. (2003). Acta Cryst. E59, m959-m960.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Todd, M. J. \& Harrison, W. T. A. (2005). Acta Cryst. E61, m1024-m1026.
Wilkinson, H. S. \& Harrison, W. T. A. (2005). Acta Cryst. E61, m2023m2025.

